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Abstract The group projector technique is developed for the representations of the direct 
product form, D = D‘ @ d ,  in which one of them has been induced from a representation of a 
subgroup. It is shown that the group projectors and symmetry-adapted bases are essentially 
determined in terms of the subgroup representations. To illustrate both the technical and 
conceptual advantages of the method, it is shown how the calculation of the normal modes 
of polymers (polyacetylene as an example) can be obtained using the symmetry of the monomer 
only, and several results of the induction theory,are reconsidered within the new framework. 

1. Introduction 

The induction of the representations from subgroup to group is one of the most powerful 
methods in the theory of the group representations (Mackey 1952, Altmann 1977). Another 
group theoretical concept, indispensable in the physical applications, the symmetry-adapted 
bases, involves the group projector technique (Cornwell 1984, Chen er al 1985). This 
paper is an attempt to develop this technique for the case of the induced representations. 
To this end the modified version of the group projector method, involving the projectors 
of the identity representation only, is applied (DamnjanoviE and MiloSeviC 1984). This 
allows the more general case, the direct product of the induced representation with any 
other representation of the group, to be considered. The method is suitable for computer 
implementation (Davies 1982, Ping et al 1989), since it gives a prescription for solving the 
physically relevant eigenproblems within the space of the initial (subgroup) representation. 

To begin with, the group projector technique will briefly be reviewed in order to 
introduce notation and to clarify the aim of the article. Let D(G)  be the representation 
of the group G in the space XD. If D(G)  decomposes into the ineducible components 
as D(G)  = @;&,D(@)(G) (a, = I ,  2, . . .), then there exists a symmetry-adapted or 
standard basis { [ @ f , m ) p  = I . .  . . , r ;  rp = I , .  . . , a,; m = 1,. . . , p )  (where Ipl denotes the 
dimension of D(*’(G)) in ‘HD satisfying the following conditions: 

@ 

D(s)lw,m) = D,$!,,(g)Ipvd. (1) 
”=I 

To determine such a basis the group operator technique prescribes the following steps: given 
the matrices of an irreducible component D‘”’(G), the operators 

P,Y)(D, G )  def = - ~ D / ~ ’ * ( g ) D ( g )  1P1 
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are calculated; the operator P f ) ( D ,  G )  is the projector, and any basis in its range can take 
the role of the vectors Iptel) (tF = 1,.  . . , a e ) ,  determining the rest of the standard basis 
as Ipt,m) = P Z ) ( D ,  G)lp te l ) .  

A slightly modified procedure, based on the group projectors of the identity 
representation, I (G), has recently been proposed (DamnjanoviE and miloSeviC 1984). Given 
the matrices of each irreducible component, D@)(G) acting in the space U, the projector 
G(D@D(’)’) P(‘ ) (D@D(e) ’ .  C )  (in the space ‘Hp = ‘Ho@@”) should be found (in the 
cited paper the order of the representations is different, but it is obvious that the choice is 
unimportant). Its range is a,-dimensionak denoting by {lpte)r Ite = 1, . . , , ac ]  the basis 
in the range of this projector, and by ( Ip ’m) Im = 1,. . . , IpI} the basis in the representative 
space @e of D b Y ( G ) ,  the vectors of the symmetry-adapted basis are obtained as the partial 
scalar products Iptem) = (@*mlpt,Jp. 

In this paper the modified procedure is applied to the case when D(G) is the direct 
product of two representations, one of them being induced from a subgroup H .  It turns 
out (section 2) that the group projector G ( D )  has the significant property: it is determined 
by the corresponding subgroup projector. When the geometry of the problem is examined 
(section 3), the class of operators with the same property is singled out. Among them 
are the relevant physical observables. Therefore, the symmetry-adapted eigenbases, which 
are important in various physical problems, can easily be found (section 4). The method 
is simplified when the group G is the weak-direct product, G = H Z ,  of its subgroups 
(section 5). As an example, calculation of the normal vibrational modes of polyacetylene 
(section 6) is performed. Together with other concluding remarks, Frobenius’ theorem and 
some related concepts from induction theory are reconsidered to point out the naturalness 
of the approach. 

M DmjanoviC and I MilosPviC 

2. Basic algebraic considerations 

Let H be a subgroup of the group G ,  with the left transversal 2 = (20, ..., z l ~ l - ~ )  
(121 = f i); i t  is assumed that zo = e, the identity element. It is well known that the 
inverses of the left transversal form the right transversal, ( z ; ’ ,  . . . , z $ , ]  and that, if Hg 
is a right coset of H ,  then the sets z , H g  (r = 0,. . . , 121 - 1) are disjoint. To summarize, 
G can be partitioned into the forms G = U , z , H  = U,Hz; ’  = U , z , H g .  For fixed t, each 
element g of G uniquely determines t ( g )  and h(g, t )  E H such that 

g = zJdg ,  Oz&. (2 )  
Given the IA‘J-dimensional matrix representation A‘(H) in the space ‘HA,, the induced 

ID’\-dimensional (ID‘[ = 1211A’1) representation D‘(G) = A’(H)  G, is constructed as 
follows. The matrix corresponding to the element g E G is made of the IA‘l-dimensional 
submatrices Di,(g), which is 0 if the element z;’gzs is not from H, while D l ( g )  = A’(h) 
if z;lgz, = h E H. Using (21-dimensional matrices E”, with elements equal to 0 except 
that (ErS),, = I ,  the induced representation takes the form (for convenience, matrices EIS 
are enumerated by t ,  s = 0, . . . , IZI - I ,  as well as their rows and columns) 

Here, the Kronecker function on G (equal to 1 if its arguments coincide and zero 
otherwise) vanishes whenever the first argument is not from H, while in the opposite 
case it singles out the element h of H equal to the first argument. Given another 
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representation d(G) in ' H d .  the matrices of the direct product D ( G )  = D'(G) 8 d(G)  are 
D(g)  = ChEH S(z;'gz,, h)ErS 8 A'@) 8 d(g) .  Taking into account the factorization 
(2). this becomes 

121-l 

r=O 
D(g)  = E"(g) 8 A'@&, t ) )  8 d(zlh(g,  t)z<i)). (3) 

The group projector of the identity representation can be found as the sum of the 
representative matrices: 

As for the sum in the brackets, the index I is fixed; in view of (Z), the sum over g splits 
into the sums over h = h ( g .  i) and s = r(g), enumerating for each f all the elements from 
H and the transversal, respectively. Only the order of terms depends on t ,  making the sum 
over h and s independent: 

To clarify the smcture of (3) and (4), the direct product of A'(H) with the subduced 
H, will be denoted by A(H):  A(A) = A'(h)Od(h); also, the transfer 

C, brs 

representation d(G) 
operators b,,? = E'" 8 ZA, 8 d(z , )  ( la,  is the identity matrix in 'HA,), and B$ = 
are introduced. With the abbreviations b, = bI0 and B = BO, (3) and (4) are 

def def I 

121-1 

D(g)  = b t l p  8 A@&, O)lbf(g) G(D) = BWW 8 H ( A ) } B t .  (5 )  
1=0 

The equalities would hold for any b,, and B,, if EW was changed to Err ;  in the rest of 
the paper a more general form for some expressions can be obtained analogously. The last 
relations reveal a similar structure for the operators D ( g )  and G ( D )  in 'HD:  the transfer 
operators couple them to the subgroup operators in ' H A ( H )  = HA, @EdHd. This inspires an 
attempt to study the transfer operators separately, reducing the work to the subgroup only. 
The following analysis of the geometry of the problem is the cornerstone for the subsequent 
applications. 

3. Geometry and transfer operators 

The representative space 'Hu of the induced representation decomposes onto the orthogonal 
sum eBt'HtA,, with = (Et0 8 ZA,)'HoAt, The total space of D ( G )  is the direct product 
'HD, 8 K d ,  and trails this decomposition: ' H D  = @ r ' H t ~ .  with ' H I A  = 'HIA, 8 'Hd = bt'HoA. 
The spaces 'HA, and 'HA are naturally identified with XOA, and 'HoA, respectively. 

The easily verifiable properties of the transfer operators 

bj,bpq = &,E'' 8 I A  btzbAq = a,?, E" 8 Z A ~  8 d(z jZ; I )  Trbb , ,  = b,&,lAl 

immediately yield 
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These relations show that bJb, and Et B are projectors, with the ranges R(bjb,) = R(Bt B )  = 
'HOA (thus b/br = Big) .  Therefore, the transfer operators are partial isometries, satisfying 
B B t B  = B and B t B B f  = Et (and analogously for br). The ranges of the transfer 
operators are R(Bt) = R @ l )  = '?iooa and R(b,) = H,a, while R(B) = R(BBt) mixes 
all the subspaces H,A. Their null-spaces are N ( B t )  = RL(B), N ( b f )  = 'HA and 
N ( B )  = N(b,) = H i A .  It should be recalled that the partial isometry bijectively maps 
the orthocomplement of the null-space onto the range, preserving the scalar products. 

In view of this, the first equation (5) clearly manifests the process of the induction. The 
operator bj maps 'H,A bijectively, at first 'rotating' the vectors by dt(z,) and then naturally 
sending them to %A. The action of D(g) is disassembled to the unitary mappings of 
onto 'H,A for each t ;  all of these mappings are essentially given by A ( H )  in H A .  

Similarly, the second expression (5) describes how the action of the subgroup projector, 
originally defined in HOA, is extended to the whole space: the first operator Et transfers the 
vectors into HOA. preparing them for the projector Em @ H ( A ) ,  while the last B transfers 
the projections back to 'HD. The range of H ( A )  (more precisely, the range of Em@ H(A)), 
being a subspace in  Hon. is bijectively mapped by B into R(B) ,  implying that the range 
of G ( D )  is a subspace in R(B) .  The equation (5) is an example of how the action of an 
operator in HD is reduced to the action of the corresponding operator in the subspace 'li.~~. 
Clearly such a reduction cannot be carried out for all the operators in HD, and the class of 
the operators allowing this will be found. 

The decomposition of the space HD provides the possibility of disassembling any matrix 
A to the IA.l-dimensiona1 submatrices: A = E,, E p q  @APq. Then the transferred operator 
in HOA is 

M DmjanoviE and I MiloSeitC 

with ,9, = ZAr @ d(z,): effectively this is the operator A$' = & E,, pjAP4D4 in HA. 
Similarly, given the operator A' in H A ,  the transferred operator in KD is defined by 

These operator mappings are opposite in a sense, but only the last one is injective, and their 
compositions are: 

While the first composition is the identical mapping on the operators in %A, the second 
one gives the cutoff of A in the subspace N E ) .  This is equal to the original if and only if 
both R(A) and NL(A) are subspaces in R ( B ) ,  i.e. when A&? = BBtA = ABBt = A .  The 
operator A with this property will be called the R(B)-localized operator. Obviously, the 
transfer operator B uniquely couples the R(B)-localized operators in HD to the operators 
in 'HA. 

The arguments on the significance of such operators in  the physical considerations will 
be postponed, in order to state immediately a simple but important theorem. 
Theorem 1. Let A be an R(B)-localized operator in HD. Then 

(i) (AC)Jo = A$'CL' and (CA)I0 = CJoAlo, for any operator C in 710; 
(ii) the eigenvectors of A belonging to R(B) are bijectively mapped by B f  to the 

eigenvectors of A &  with the same eigenvalues, i.e. Ix) E R ( B )  satisfies Alx) = ulx) if and 
only if Ix)' = B t l x )  E 'Hob satisfies ALl.r)' = a l x ) ' .  
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The first part is obvious, since under the conditions of the theorem AC = ABEtC. 
Then from BtA(BEtIx)) = a B t l x )  follows the second statement. 

Since the theorem applies to the operators transferred to 'HA.  the analogous statements, 
(A°Co)T = A'TC'T and A'lx)' = culx)' implies A'fBlx)' = aBIx)O, starting from the 
operators in 'HA. are automatically verified. Under the conditions of the theorem, statement 
(i) states that the transferred operators commute if and only if their originals do; hence, the 
maps of the normal (Hermitian) operators are normal (Hermitian) again. Consequently, the 
orthonormal eigenbasis of a normal operator Ao in 'HA is mapped by B bijectively into the 
part of the orthonormal eigenbasis of the transferred operator A'?; these vectors span the 
subspace R ( B ) .  In particular, each eigensubspace of A'? corresponding to a non-vanishing 
eigenvalue is spanned by some of these vectors. Instead of solving the eigenproblem for 
A, it suffices to solve it for A$'. For each eigenvector Ix)' of A", the vector Blx)' is the 
eigenvector of A for the same eigenvalue. The definition of B points to the specific simple 
structure of the obtained eigenvector Blx)': its component (projection) in the subspace 'H,, 
is 

The preservation of the eigenvalues implies that the projectors in 'HA and the R ( B ) -  
localized projectors in 'HD bijectively correspond, relation (5) being an example of this. 
This coupling for BBt and B'B = lA, in the view of the theorem, means that any operator 
A in 'HD satisfies (EBtA)$' = (ABBt)r' = A$'; moreover, if A commutes with BE' 
(implying that R ( B )  is invariant subspace for A), then A$? = BBtA. 

4. Symmetry-adapted bases 

The procedure for finding the symmetry-adapted bases can be adjusted to the considered 
form of the representation D ( G ) .  According to the remark in the introduction, it remains 
to find the group projectors G ,  = G ( D  @ D(,)*), for each irreducible component of 
D(G). But, the structure of the representation D ( G )  @ D(J')'(G) is the same as that 
of D ( G ) :  it is the direct product of the induced representation D'(H)  t G with the 
representation d(G) @ D@)'(G).  Thus, the relevant group projector is of the form (5) with 
B, = & E, E''@ Zx €3 d(z , )  @ D(,)*(zf)  and A ( H )  @ D @ T ( H )  instead of A: 

G, = &(EW @ Gf, H ) ] B J  Gf = H ( A  @ D',)') = H (L 

Then, according to the theorem, only the basis lpt,); in the range of the subgroup 
projector is to be found. Mapped by B,, it produces the basis Ipt,), in the range of 
G,.  and the wanted symmetry-adapted vectors from 'HD are the partial scalar products 
(pt,m) = (p*m[(B , [p t , ) t ) .  Since the vectors [pt,m)' 5 (p*mjpt,$ obey the relations 
(p*nap(J'p(z~)lpt ,$  = D ~ $ ( ~ ~ ) I p t , m ' ) ~ .  the structure of B, enables us to solve 
the whole problem In 'HA. That is, in accordance with (7), the component from of 
the symmetry-adapted vector Ipz,m) is determined by the vectors Ipt,m)': Ip.t,m)" = 
m ~ y O  I z*, @d(z , )  @ D~$(z ,T ) lp t , )~ ;  the partial trace gives finally 

Note that the sum in the last equation defines for each s the vector in NO,, which is mapped 
to Ipt,m) by E .  
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Let 'HD, the representative space of D(G),  be the state space of a quantum system 
with the group of symmetly G .  Furthermore, let A be an observable describing some 
property of the system, thus commuting with the representation D ( G ) .  There exists the 
symmetry-adapted eigenbasis of A ,  i.e. the vectors of the standard basis (1) can be chosen 
to satisfy Alpt,m) = ct+,,,lpt,m). If I,,. denotes the identity operator in the space of the 
irreducible representation D(PY(G), then the Hermitian operator A 0 I,,. commutes with 
D(G)@D(Ly (G) ,  and with the projector G,.  Therefore, the observable A, = (AQI,)G, is 
considered, and its eigenbasis in the range of G, should be found. Finally, the partial scalar 
products of the obtained vectors with the vectors Ip*m) form the required symmetry-adapted 
eigenbasis of A. 

Within this algorithm theorem 1 offers a shortcut. Since G ,  and A,  satisfy the 
conditions of the theorem, it is sufficient to solve the whole problem for the operator 
Aio = ( A Q I  ,. ) J0GLo. The obtained eigenvectors of A: from R(Gio)  should be transferred 
by B, and the partial scalar products give the eigenbasis. Again, as has been described 
above, the whole problem can be solved in 'Ha. Note that within the solving of the 
eigenproblem of Aho, the quantum numbers imposed by symmetry of the subgroup are 
pointed out and incorporated in the final symmetry-adapted basis. 

The requirement [A, D ( g ) ]  = 0 for each g in G imposes some conditions on the matrix 
elements of A .  If coset representatives are taken for g, a straightforward calculation yields: 

Note that the sufficient condition for validity of (9) is that A commutes with the operators 
representing the transversal. 

5. Special case: the transversal is a subgroup 

In the previous sections no restriction on the structure of the group has been imposed, and 
the conclusions are quite general. Some additional results can be derived when the group 
G is the weak-direct product (Jansen and Booth 1967) of its subgroups H and Z, i.e. when 
the transversal itself is a subgroup of G. This immediately simplifies calculations, since 
h(z,, t )  = e and zt(,) = z;'z,. For example, the expression (9) becomes 

AP9 = BqAP(Zs)O pq t AJ0 = BLA". (10) 
P 

It has been shown (Damnjanovi6 and MiloHeviC 1984) that the group projectors reflect 
the group structure: G ( D )  = H(D)Z(D) .  Using A(e) = la in the matrices D(z,) from 
(5). the second factor-projector is: Z ( D )  = & E, DQ) = & E, 6, E, btc,, = BBt .  The 
last equality holds due to the group property of Z: for fixed t ,  z , (~ , )  runs over the Z, i.e. 
the second sum is independent on t .  Thus the subspace R ( E )  is more clearly described as 
the range of Z(D). Looking backward to the general case, it becomes clear that BB' is 
Z ( D ) ,  the projector for the subgroup generated by the transversal. 

Leaving aside other theoretical aspects, the case when Z is a cyclic subgroup will be 
considered. If Z L  = z is the generator of Z, the elements of the transversal are zt = zc .  
Then, it is easily seen that f (b)  = f -ss, and with ,9 ~ B I  the equations (10) read: 

- 
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Since d(G) .1 Z is a representation of the cyclic group Z, it can be decomposed onto the 
irreducible ones, which are all of the form d‘”(zS) = eik3. Therefore, there exists a unitary 
matrix S, such that pi = Sdiag(e’kis,. . . , e ~ n s ) S t  (each k, least IA‘I times). Then (11) 
becomes a Fourier-type relation of the operators A and A&’: 

StALoS = Cdiag(eikl’ ,  . . . , eikA’)(StAsoS) or Af = Ceiz’ASo P I  ’ 

fP 

(12) 
Let it be noted here that groups with such a structure frequently appear in the physics 

of discrete systems. All the point groups are of this type. The symmorphic space groups 
essentially have the same structure, since the translational group is the direct product of 
three cyclic groups; taking it for Z, the last expression is obtained again, with p and 
q being three-dimensional integer vectors. In particular, each line group (MiloSeviC and 
DamnjanoviC 1992) is the weak-direct products of one point group and one infinite cyclic 
group. 

6. Example: normal modes of polyacetylene 

Trans-polyacetylene is the simplest planar polymer. The equilibrium coordinates of the 
carbon and hydrogen atom of the sth monomer are (Chien 1984): R&) = ((- l)”Xc, 0, sa) 
and &(s) = ((-1)’XH, 0, sa), where a = 1.24 A is half of the translational unit of the 
polymer, while XC = 0.33 A and XH = 1.41 A. The symmetry group of this polymer 
is (MiloSeviE and DamnjanoviC 1993) the line group G = L2lJmcm = Dlh21, i.e. the 
weak-direct product of the point group H = Dlh = ( e ,  cr,. q,, U x ]  (uz and Uh are the 
reflections in the x z  and x y  planes, U, is the rotation for n around x axis) and the infinite 
cyclic group Z = 21 generated by z = (C-La) (the rotation for A around the z axis followed 
by the translation for a along the z axis). Obviously, the monomer with s = 0 is invariant 
under the subgroup H, and the rest of the polymer is obtained by the action of Z on this 
monomer. 

Usu. with s, t = 0, & I , .  . . and 
a,,5 = C, H. The two-particle interactions depend on the types of particle and their 
distances only: U;(lrsa - rrol) = U@@ - t ) .  Its second derivative at the equilibrium 
configuration is denoted by U+(s - f ) .  Being cyclic, all the y coordinates are ignored. In 
the view of this, the infinite-dimensional polymer configurational space XD is decomposed 
onto the orthogonal sum HD = @$XS of the four-dimensional monomeric spaces X,? (two 
dimensions for each atom). To find the normal modes, the eigenproblem of the (infinite- 
dimensional) dynamical matrix 

The potential of this system is U = f E$,, a., 18 

should be solved. This matrix can be written in the form W = E,, Es‘ @ Ws‘, where U”‘ 
is the four-dimensional matrix with the elements W g ’ .  In agreement with ( l l ) ,  only the 
blocks W ‘ O  will be studied carefully. For 

(X, - (-1)”X,)2 sa((-l)”X, - X,) 
sa((-I)”X,  - X,) sZaZ 

(X, - (-1)*XXg)2+s2a2 
R;(s) = 

these matrices for s # 0 or a # ,5 are W;;; = -* U$(s)(R;(s))j. As is well known, 
the translational invariance of the whole system, i.e. the conservation of the momenta, 
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manifests as E,, -W$ = 0, implying WE; = -xi, fiW$j (the primed sum is 
performed over pairs s, p different from 0, a). 

The form of R;(s)  and the fact that the potential is a real even function of s (i.e. of the 
distance), lead to some special properties of the matrix elements w$(k) = E, W$e-'k,7 
from (12). For i = j they are real and even in k ,  satisfying 

M DamnjanoviC and I MiloSevit 

On the contrary, for i # j ,  they are pure imaginary and odd in k, with 

w g  ( k )  = w z ( k )  = - w g  (n + k) = i \v$; sin(ks) 

(vanishing fork = 0, n). For convenience, w$(k), w$k) and w$$(k) will be denoted by 
Cj(k). Hj(k) and wj(k),  respectively. 

The matrix W commutes with the dynamical representation S"(G) = D(G) of G, which 
is the direct product of the permutational D'(G) = S(G) and the vector representation 
d(G) = V(G). It is easy to calculate: 

(; -9) V(u,) = V ( e )  = I2 V(ud = V(U,) = -V(z) = 

(12 is the two-dimensional identity matrix). Each type of atom forms one el orbit of G, 
with H as the stabilizer group (MiloSeviC and Damnajanovif 1993). This means that 
in the monomer permutational representation A'(H)  = Y ( H )  the elements of H are 
represented by Y(h)  = 12, and that the monomer dynamical representation is diagonal 
A ( H )  = Y ( H )  @ V(H) = diag(V(H), V(H)). Since the representation S(G) is induced 
from the Y(H), i.e. S(G) = Y ( H )  f G, the eigenproblem of W can be solved at the level 
of the monomer using the developed theory. 

The irreducible components of the dynamical representation of the polyacetylene are 
(MiloSevit and DamnjanoviC 1993, table 14): 

S v ( G )  = ~ A , + + ~ ~ A , + Z O A : + ~ ~ A ; + ~ , E A +  (4;kE~,+4;kE,4,) 
kc(0.n) 

+ ~ Q B ~ + ~ O B ~ + Z ~ E B +  ( 2 L k E ~ , + 2 F k E ~ , ) .  
kE(0.n) 

The representations in the second line, containing the label B ,  are related to the 
displacements along the y axis (in MiloSeviC I and Damnjanovit M (1993) the full vector 
representation is considered), implying Wf = 0 in these cases. As for remaining irreducible 
components of Sv(G), the operator W,?" should be found, and its eigenproblem solved. The 
relevant matrices for the irreducible representations are given in the table 1. 

The projectors Hw = H ( A  @ D")') are P+ = diag(l,O, 1.0) for D") = oAO+,oAT, 
P- =diag(O, 1.0, I )  for D(&) =oA,.oA;, 

for D(F) = ; k ~ A o ,  ;k E ~ ,  , E ~ .  
It should be noted that there are five different operators j3, giving rise to the five operators 

(W 8 IP.)'O by (12). All of them are essentially of two types. As for the one-dimensional 
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lhblc 1. The mavices of the irreducible components of the dynamical representation of 
potyacerylene. After the label of the irreducible rrprrsentarion in the fin1 column. the 
corresponding representative matrices follow (columns 2-6). In the last column the matrims 

representations the result is 

t Here, q = 0 and q = x for the representations oA, and oA:, respectively, and p = x + q .  
Similarly, for the two-dimensional representations 

-w:ta, 

w: (4 )  

H: (4) 

C:@) 0 -c:(q) 0 w,"(s') 0 W:(ci) 
0 C:(ll) 0 c:(q) 0 w:(a  0 

0 c:(q) 0 w:(q) 0 w: ( 4 )  
0 -c:(q) 0 c:(q) 0 -w:(q) 0 

0 W : ( B )  0 w:(q) 0 H,"(d) 
- w : m  0 w t ( 4 )  0 H:(q)  0 H;(q)  

0 w: (a 0 wt(q) 0 - f q ( q )  0 H; ( 4 )  
0 : I  _=I c,*(q) wf(@ 0 -w:(q) 0 H,X(i) 0 -H:(q)  0 0 

- where q = 4,  q = x + 4 and q = $ for the representations 9 9 E A o ,  ; *EA,  and .Ea, 
respectively. 

It remains to multiply these matrices by the group projectors, and to solve the 
eigenproblems of the products. The dimensions of the eigenproblems are essentially 
equal to the frequencies of the corresponding irreducible components, i.e. two for the one- 
dimensional and four for two-dimensional components. If 

and 
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the eigenvalues and the eigenvectors for the one-dimensional representations are: 

M DamnjanoviC and I MiloSeviC 

The translational invariance, expressed as mcCj(0) = mHH,’(o) = --tu;@), gives 
oi(0) = 0, revealing the translational x and z modes OAT and oA;. The eigenvectors 
coordinates should be multiplied by the square roots of the corresponding atomic masses, 
to get the precise geometrical notion of the vibrations of the monomer with s = 0, and 
the additional action of p gives, due to (8) the displacements in the sth monomer. The 
two-dimensional representations can be treated along the same lines, but the results are 
omitted, being lengthy enough. with no essentially different point. 

It should be emphasized that the modified group projector technique enabled us to reduce 
all the calculations of the normal modes (i.e. infinite-dimensional problem) to the monomeric 
level (finite-dimensional); as has been explained in (Damnjanovit and MiloSevit 1984), it 
remains to solve a few eigenproblems of finite-dimensional matrices for the eigenvalue 1, 
to derive the normal modes and frequencies. Let us mention here that this procedure has 
already been implemented in the computer program POLSym to find the normal modes, and 
some other characteristics of polymers. 

7. Concluding remarks 

The connection between a representation of the subgroup and the induced representation of 
the group is analysed. The results enable us to solve the problem of the symmetry-adapted 
eigenbases at the level of the subgroup solely, pointing out the relevance of the quantum 
numbers based on the subgroup symmetry. 

The proposed group projector technique appears as a natural method to deal with the 
induced representations. Although it seems that the most of the induction theory can be 
interpreted within this concept, G n l j  severai theorems (Altmann 1977, section 1 I )  will 
be re-derived here in order to illustrate the basic ideas. To begin with, recall that the 
trace of the projector G ( D  @ D””) is the frequency of the irreducible representation 
D ( @ ) ( G )  in the representation D(G). Then a radically shortened proof of the Frobenius 
reciprocity theorem is offered with D ( G )  = (A(”) (H)  t G) @ D@”(G), i.e. A ( H )  = 
A(“)(H)  @ (D(@”(G)  J. H ) ,  expression ( 5 )  implies that the frequency of D ( @ ) ( G )  in 
A(”)(H)  t G is equal to the frequency of the irreducible representation A ( “ y ( H )  in 
D(@)’(G) .1 H ,  i.e. to the frequency of A ( ” ) ( H )  in D(@)(G)  .1 H .  The Burnside theorem 
appears as the special case for H = (e] and A ( ” ) ( H )  = 1; the induced representation 
D‘(G) is just the regular one, while the subgroup projector becomes H ( I  @ /I(@”) = Is., 
with the trace equal to p. The frequency theorem for the induced representations, stating 
that the frequencies of I ( G )  in A(H) t G and I ( H )  in A ( H )  are equal, is an immediate 
consequence of (3, for d(G)  = I ( G ) .  The theorem on the equivalence of the representations 
D,(G)  = ( A ( H )  t G )  @ d ( G )  and Dz(G) = [ A ( H )  @ (d(G) .1 AY)] t G is similarly 
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proved: for any irreducible representation D@)(G) ,  both the projectors G ( D ,  @ 0‘”’) 
and G(D2 @ @fir)  are transferred to the subgroup projector H ( A  @ d @ Dce)’), and 
thereby their traces are equal. Further, the transitivity of induction, i.e. the equivalence of 
D = A ( K )  t G with ( A ( K )  .f H) t G for K < H < G, is seen as the double transferring: 
G ( D  @ D(”)’) = B H H ( ( A ( K )  t H) @ D(”)’)BL = B H B K K ( A  @ D(w)’)BiBf,  (with the 
obvious meaning of BH and B K ) ,  guaranteeing the same irreducible components for both 
the representations. 

The dynamical representation of the discrete system, which is important when the 
normal modes are sought, is the direct product of the vector representation and the 
permutational representation. The latter is often obtained as the induced representation, 
from the permutational representation of the stabilizer group of a subsystem. In such cases 
the developed theory enables us to work with the subsystem and its symmetry group only. 
A typical example, treated in this paper, is the polymer, the normal modes of which can 
be derived through the procedure involving one monomer only. It is important to note 
that there are other physical situations quite analogous to this (Elliot and Dawker 1979). 
For example. when the molecular orbitals are calculated as the linear combination of the 
atomic orbitals, the procedure is the same as that for the normal modes, only the vector 
representation has to be substituted with another one (some of the irreducible representations 
of the full rotational group, subduced to the orthogonal subgroup of G) (Wigner 1959). The 
method suggested has been implemented within the computer program WLSym (MiloSeviC 
and Damnjanovit 1992). designed for calculations in polymer physics. 
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